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Abstract  8 

Reoccurring drought through the early 2000s has caused a serious water scarcity issue 9 

in the Colorado River Basin. Previous modeling studies have focused on the impact of 10 
climate change without considering the adaptive behaviors of farmers and under-utilized 11 

Indian water rights. In this paper, we use a coupled agent-based water resource model 12 
(ABM) to investigate how the adaptive decisions of farmers can affect water resource 13 

management under both climate change impacts and fully utilized Indian water right 14 
conditions. We used five General Circulation Model projections with RCP8.5 scenarios for 15 

the study. The results of farm-level decision-making showed different responses in 16 
irrigated areas that were changing due to climate change impact. While winter precipitation 17 

changes might partially explain the behavior changes, no specific pattern could be 18 
concluded based on their location. Also, farmers’ responses about annual water diversion 19 

showed more significant inter-year variation compared to irrigated areas. Basin-level 20 
metrics showed that climate change impacts will generally worsen water scarcity issues as 21 

measured in Navajo Reservoir storage, flow to Lake Powell, and instream flow requirement. 22 
But these basin-level water scarcity metrics cannot reflect individual farm-level impacts 23 

under climate change, which is why modeling the bottom-up management actions is 24 
necessary. When the under-utilized Indian water rights are fully used, it is more likely to 25 

trigger the shortage sharing agreement due to the higher tribal water depletion. Evaluation 26 
of model uncertainty and a more realistic setup for adaptive actions under drought 27 

contingency plans are suggested for future research. 28 
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contingency plans, tribal water rights  30 
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1. Introduction  32 

Clean and sufficient water supply is one of the Sustainable Development Goals 33 

prompted by the United Nations (UN, 2015). However, water scarcity, along with poor 34 

water quality and inadequate sanitation, still plagues food security and livelihood choices 35 

for poor families across the world. Among many river basins suffering water scarcity 36 

around the world, the Colorado River Basin (CRB) in the United States (US) is one of the 37 

most important based on its quantity and supply coverage. The entire CRB is under water 38 

stress due to a long-lasting drought dating back to the early 2000s. Udall and Overpeck 39 

(2017) concluded that between 2000 and 2014, annual flow reductions averaged 19.3%; 40 

this was below the 1906–1999 period, which is the worst 15-year drought on record. This 41 

long-lasting drought raised the prospect of water delivery curtailments and decreased 42 

hydropower production, among other effects (Steele et al., 2018; Stern and Sheikh, 2019). 43 

However, despite previous efforts to alleviate future shortages, the basin’s hydrological 44 

outlook has generally worsened in recent years (Rhee et al., 2019). 45 

Numerous studies have concluded that ongoing climate change has worsened water 46 

scarcity in the CRB due to streamflow decline (for example, Cook et al., 2019; Dawadi and 47 

Ahmad, 2014; Ficklin et al., 2013; Milly and Dunne, 2016; Parson et al., 2018; Xiao et al. 48 

2018). This decline has been statistically confirmed to be associated with the increasing 49 

temperature, since the precipitation pattern in the region has not significantly changed for 50 

the past 50 years (McCabe et al. 2017; Udall and Overpeck, 2017; Vano and Lettenmaier, 51 

2014; Woodhouse and Pederson, 2018; Wi et al., 2012). These previous studies focused on 52 

climate change impacts by discussing the risk of water scarcity on hydropower generation 53 

and irrigation, but they did not have a quantitative analysis of adaptive water management 54 
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actions such as water delivery curtailments, water shortage sharing plans, and adaptation 55 

of water conservation technology. Therefore, without considering the demand response 56 

side of water management, the suggested risk of water scarcity caused by climate change 57 

impacts might be over- or underestimated.  58 

We define adaptive water management in this paper as the societal response to mitigate 59 

water scarcity impacts. In general, these responses can be classified into top-down planning, 60 

such as the 2019 Colorado River Drought Contingency Plans (DCPs) Authorization Act 61 

approved by Congress (P.L. 116-14), and bottom-up behavioral reaction from local 62 

residents. The DCP approach considered the entire basin establishing (additional) rules, 63 

regulations, and curtailment requirements across the riparian states. For example, under the 64 

2019 Upper CRB DCP, the Upper Basin states (Wyoming, Colorado, Utah, and New 65 

Mexico) agree to manage upstream reservoirs to keep the surface of Lake Powell 35 feet 66 

above the minimum elevation needed to run the dam’s hydroelectric plant. Also, the 67 

demand management program in the 2019 DCP includes seller and buyer agreements 68 

allowing for temporary paid reductions in water use (Stern and Sheikh, 2019). However, 69 

this top-down planning might be difficult to implement in reality, as highlighted by 70 

Sullivan et al. (2019): differences in rules and social norms are not addressed, and they 71 

could cause problems when norms underlying rules are interpreted differently. Therefore, 72 

they suggested a qualitative study that considers the power dynamics among stakeholders. 73 

Meanwhile, the heterogeneous water conservation decision-making process of different 74 

users need to be considered, as suggested by Taylor et al. (2019), to help advance the DCP 75 

process. These types of bottom-up approaches have become popular in recent years. 76 

Studies have used the decentralized management concept (Garrick, 2018; Yang et al., 2009) 77 
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or ABM (Hyun et al., 2019; Khan et al., 2017; Yang et al., 2019) to quantify the behavior 78 

change of local residents as a bottom-up adaptive management plan. 79 

Another challenge of future water management in the CRB (especially the Upper CRB) 80 

is the under-utilized Indian water rights. These water rights are often the most senior in a 81 

basin, and their highest priority holds even if other users may have already developed a 82 

water infrastructure of their own (Jankowski, 2018). The full utilization of Indian water 83 

rights will affect other established users. Even if existing water users can lease water from 84 

tribes, the additional cost and technological and legal barriers will be a challenge (Bushnell, 85 

2012). There are 22 recognized tribes in the entire CRB and they are collectively entitled 86 

to 2.9 million acre-feet (MAF = 3.6 billion cubic meters, BCM) per year of Colorado River 87 

water. In the Upper CRB, the current tribal water diversion is about 0.67 MAF (0.83 BCM) 88 

per year, but the reserved plus unresolved water rights might push the total water diversion 89 

toward 1.82 MAF (2.24 BCM) per year, a 300% increase (USBR, 2018). Therefore, it is 90 

necessary to consider fully-utilized Indian water rights in the CRB for any water 91 

management studies and quantify their effect in the DCP or adaptive management plan. 92 

To address these research gaps, the objective of this paper is to quantify bottom-up 93 

adaptive water management from farmers under climate change impacts and fully used 94 

Indian water rights. We apply a coupled agent-based water resources model (Hyun et al., 95 

2019) to simulate different climate change scenarios while considering farmers’ adaptive 96 

behaviors (i.e., their decisions on water withdrawal can change year-by-year based on 97 

previous experiences and future water availability). We also test the influence of under-98 

utilized Indian water rights, following Bennett et al. (2019), to identify the timing and 99 

magnitude of farmers’ behavioral changes. The San Juan River Basin located in the Upper 100 
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CRB was selected as the case study area. The rest of the paper is structured as follows. We 101 

introduce the water use situation in the study area in Section 2. The model that we applied 102 

and the scenarios we tested are presented in Section 3. We show different scenario results 103 

from the model at the system and farmer level in Section 4. The model uncertainty issue 104 

and limitations are discussed in Section 5, followed by the conclusions. 105 

2. Water uses in the San Juan River Basin  106 

The San Juan River (SJR) Basin (Figure 1) is a representative of the diversity present 107 

across the CRB with a drainage area of 64,570 km2. The upper SJR originates in the San 108 

Juan Mountains (part of the Rocky Mountains) of Colorado that imparts a snowmelt-driven 109 

character to the runoff. The lower SJR, located in New Mexico and Arizona, traverses high-110 

desert, with intermittent streams that drain into the main tributary of the San Juan during 111 

the summer, when they are charged by summer monsoonal rains (Bennett et al., 2019). All 112 

of these physical characteristics are very similar to the entire CRB and make it a suitable 113 

candidate for the demonstration.  114 

The Navajo Nation is the largest water user in the SJR and its current water diversion 115 

is utilized mostly for agriculture by the Navajo Indian Irrigation Project (NIIP). This is a 116 

result of years of negotiation among the Navajo Nation, the US government and the State 117 

of New Mexico, and it finally became federal law in 2009 (Bennett et al. 2019). Currently, 118 

NIIP only diverts 50% of its water rights, which is about 200,000 acre-feet (247 million 119 

cubic meters). However, according to the 2009 settlement, water uses by the Navajo Nation 120 

will increase with the expansion of the NIIP. There are 16 other major irrigation ditches; 121 

four cities and two power plants located in New Mexico also use water from the SJR. 122 

Irrigation is the largest portion of non-tribal water use, followed by the cooling water uses 123 
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for the two power plants. The main planting season runs from May to October, with hay, 124 

corn, and vegetables as the principal crops in the region. Navajo Reservoir is the main 125 

water infrastructure in the basin, which is used for flood control, irrigation, 126 

domestic/industrial water supply, and environmental flows. The active storage of the 127 

reservoir is 1.3 MAF (1.6 BCM). The maximum release rate is limited to 5000 cubic feet 128 

per second (cfs) or 141.58 cubic meters per second (cms). 129 

The updated regional water plan (2016) summarizes the corresponding action that 130 

water users in the SJR need to take under drought conditions. The ten largest water users 131 

have cooperated to develop a “shortage sharing agreement” to keep Navajo Reservoir from 132 

drawing down the reservoir pool elevation below 5990 ft (2041 m), which is the elevation 133 

required for NIIP diversion. The agreement stipulates that all parties share equally in 134 

shortages caused by drought (2013-2016 shortage agreement is available at 135 

https://www.fws.gov/-southwest/sjrip/DR_SS03.cfm). The 2019 Upper CRB DCP 136 

requires the Navajo Reservoir’s operation (along with others such as Blue Mesa Reservoir 137 

and Flaming Gorge Reservoir not in the SJR basin) to maintain the water level in Lake 138 

Powell potentially through a drawdown of their own storage. However, no detailed 139 

information is available on how Navajo Reservoir might change its operation at the time 140 

this paper is written (February 2020). 141 

3. Method and Scenario Setup 142 

3.1. Modeling approaches for water resources in the SJR 143 

The SJR has been the target of several previous modeling studies. Ewers (2005) used a 144 

system dynamics model to evaluate the tradeoff between competing water uses in irrigation 145 

https://www.fws.gov/-southwest/sjrip/DR_SS03.cfm
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and power generation. However, this model was not process-based and used a stochastic 146 

flow generator to simulate inflow (water supply). The setup for Navajo Reservoir and NIIP 147 

water use was overly simplified and did not fully represent the complexity of water 148 

infrastructure operation in the basin. Ficklin et al. (2013) developed a Soil and Water 149 

Assessment Tool model for the entire Upper CRB. They used the naturalized flow for 150 

calibration targets and did not consider the water withdrawal and reservoir operation. 151 

Bennett et al. (2018) used the Variable Infiltration Capacity (VIC) model to evaluate the 152 

impact of forest distribution on streamflow under climate change. Similar to Ficklin et al. 153 

(2013), this study only considered the naturalized flow. Bennett et al. (2019) conducted a 154 

follow-up study and used a VIC-Riverware modeling framework to address the water 155 

infrastructure complexity in the SJR. They tested the climate change and NIIP water use 156 

impact on five key basin-wide metrics. We followed Bennett et al. (2019) and added the 157 

adaptive behavior of farmers into the modeling framework via ABM to further evaluate the 158 

influence of bottom-up adaptive management in this basin.  159 

Hyun et al. (2019) developed an Agent-Based-Riverware modeling (ABM-Riverware) 160 

framework that quantified the decisions of major irrigation districts on water withdrawal 161 

and irrigated areas in the New Mexico portion of the SJR. This ABM-Riverware model 162 

requires climatic (from VIC) and hydrologic inputs (from Colorado Surface Water 163 

Availability, StateMod) for the reservoir and river routing simulation, as well as factors 164 

that affect farmer behavior for the simulation of agent decisions. A schematic of the 165 

modeling platform is given in Figure 2. The 16 major irrigation districts in New Mexico 166 

are grouped by location as upstream of Navajo Reservoir (Group 1), the Animas River 167 

(Group 2), and downstream of Navajo Reservoir (Group 3). This ABM-Riverware 168 
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framework uses Bayesian inference (BI) mapping to quantify the psychological thought 169 

process of farmers with a cognitive map between decisions and relevant preceding factors 170 

that could affect decision-making. A risk perception parameter (the “λ” value in Hyun et al. 171 

2019) is used in the BI mapping to represent farmer beliefs in the preceding factors and 172 

treated as parameters to be calibrated. The range of the 𝜆 values is from “0.5” (risk-averse, 173 

which means farmers will make decisions fully dependent on their previous experience) to 174 

“1” (risk-seeking, which means farmers will make decisions fully dependent on new 175 

information). The preceding factors we used in this study are (1) next year’s winter 176 

precipitation as a proxy of the snowpack, (2) last year’s flow violation at the basin outlet, 177 

(3) Navajo Reservoir storage at the end of the water year (September) and (4) last year’s 178 

NIIP annual water diversion. These preceding factors have been confirmed as the main 179 

factors for farmers making irrigation decisions in the region and some example cognitive 180 

maps that visually link farmers’ irrigation decisions with those factors can be found in 181 

Hyun et al., 2019. The framework also used the cost-loss model to address farmer behavior 182 

caused by changing socioeconomic conditions (“z” value in Hyun et al. 2019). The z value, 183 

which was calculated as the ratio between the “expected cost of taking management action 184 

that will potentially increase the gross economic profit” and “the expected opportunity loss 185 

of not taking such management action,” is an abstract representation of an agent’s 186 

profitability, with 1 being extremely profitable and 0 being absolutely unprofitable. Their 187 

results showed that historical adaptive behaviors could be captured by this ABM-188 

Riverware framework, and they provided an improved representation of human decision-189 

making processes compared to conventional rule-based ABMs, which do not take risk 190 

perception into account. Technical details of this ABM-Riverware framework can be found 191 



9 
 

in Hyun et al. (2019). We utilized this framework in this paper to understand how these 192 

adaptive behaviors might evolve under climate change.  193 

We recalibrated the ABM-Riverware framework using irrigated area data after the 194 

1960s. The main reason was that farmer beliefs in the preceding factors showed a 195 

significant change after the Navajo Reservoir was built, especially for downstream farmers 196 

like Hammond and Fruitland-Cambridge. Because of the missing precipitation data issue 197 

in the NOAA database, PRISM monthly winter precipitation products (PRISM, 2019) were 198 

applied in this study. The recalibration results using Nash–Sutcliffe Efficiency (NSE, Nash 199 

and Sutcliff, 1970) and Kling-Gupta Efficiency (KGE, Gupta, et al., 2009) are shown in 200 

Figures S1 and S2, respectively, and the calibrated ABM parameters for each agent (“λ” 201 

and “z” values) are listed in Table S1 in the supplementary materials. 202 

3.2. Scenarios and water scarcity metrics  203 

Several previous studies quantified the climate change impact on streamflow at the SJR. 204 

For example, Wilby et al. (1999) and Miller et al. (2011) used raw and statistically 205 

downscaled General Circulation Model (GCM) outputs to simulate the streamflow in the 206 

SJR and its tributary. Both of their results showed a decreasing trend in streamflow under 207 

climate change. Bennett et al. (2018) and Bennett et al. (2019) used five GCMs: IPSL-208 

CM5A-LR, CanESM2, IPSL-CM5B-LR, HadGEM2-ES, and MIROC-ESM, and they 209 

used the latest representative concentration pathway (RCP) 8.5 projection in CMIP5 210 

(Taylor et al., 2012) for a similar purpose. In this paper, we used the same five GCMs and 211 

RCP 8.5 projection as our climate change scenarios with a simpler naming system: 212 

IPSL5AR (IPSL-CM5A-LR), CANESM (CanESM2), IPSL5B (IPSL-CM5B-LR), 213 

HadGEM2 (HadGEM2-ES), and MIROC (MIROC-ESM). Figure S3 in the supplement 214 
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materials shows the mid-term and long-term climate projections of the five GCMs. All five 215 

GCMs predict a warmer climate with an increase of temperature 2.4 to 3.6 oC, and only 216 

IPSL5AR and HadGEM2 predict a drier climate. The winter precipitation (a key preceding 217 

factor that affects agent decisions) change inside the San Juan Basin from these five GCMs 218 

was also compared with the historical range (PRISM data) in Figure S3 of the supplemental 219 

materials.  220 

Following Bennett et al. (2019), we used five different basin-wide metrics to compare 221 

water scarcity across different scenarios (Table 1). Mean annual storage in Navajo 222 

Reservoir provided a general measure of water available to the basin for use. San Juan-223 

Chama diversions (transboundary water supply via the San Juan-Chama project to the Rio 224 

Grande Basin) provided a general measure of impact beyond the SJR. The total annual 225 

shortage was summarized within the SJR basin water shortage from all irrigation districts. 226 

Mean average streamflow at Bluff, UT represented the water contribution from the SJR to 227 

the entire Upper CRB (Lake Powell). Impacts on environmental or instream flows were 228 

measured at the Four Corners gage (located near the border of New Mexico and Arizona). 229 

Current operations have a minimum target of 21 days above 5000 cubic feet per second 230 

(cfs) (14.15 cubic meter per second) between March 1 and July 31 to maintain the critical 231 

habitat.  232 

Figure 3 summarizes all scenarios tested in this paper. The ABM-Riverware model is 233 

used to quantify farmer decisions about irrigation area and annual water diversion and their 234 

resulting impact on five basin-level evaluation metrics under 1) historical climate, 2) future 235 

climate, and 3) the combination of climate scenarios with changing NIIP water diversions. 236 

We used three different settings for future farmer behaviors to test the impact of bottom-237 
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up management: 1) “Business-as-usual” used 2013 irrigated areas of each agent throughout 238 

the entire simulation period, 2) historical minimum irrigated areas of each agent (as a 239 

boundary condition test) were used, and 3) dynamically changing irrigated areas with ABM 240 

were used as the adaptive management. The results in the next section follow this logic. 241 

4. Results 242 

4.1. Climate change impacts on farmer decisions  243 

Figure 4 shows the historical irrigated areas from 1929 to 2013 as black dash lines for 244 

each of the 16 irrigation districts and the future irrigated area under five GCMs, plus full 245 

NIIP water diversion with different colored lines. The x-axis is the year and the y-axis is 246 

the irrigated area in acres (1 acre = 0.40 hectares). Note that we assume the framers risk 247 

perceptions (λ) toward preceding factors and external socioeconomic conditions (z) are 248 

constant. But since the preceding factors themselves (especially winter precipitation) are 249 

changing, the actual decision of farmers will change accordingly. Overall, most irrigation 250 

districts showed a decreasing pattern of irrigated areas under most of the future climate 251 

conditions and, to a large extent, the curves seemed to follow the historical trend. Among 252 

future climate scenarios, IPSL5AR tended to have the lowest irrigated area, as they were 253 

the driest GCM basin-wide. CANESM and MIROC predicted relatively wetter future 254 

climate conditions, but not every district showed an increasing trend of irrigated areas. 255 

Some interesting pattern of irrigated area tipping points was observed and can potentially 256 

be explained by winter precipitation patterns. For example, IPSL5AR showed a medium 257 

winter precipitation value in the upstream of the Navajo Reservoir region (Group 1, Figure 258 

4a), which was the reason the irrigated area under IPSL5AR was not the lowest. Also, the 259 
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average winter precipitation had a clear shift around 2050 from 147 mm to 126 mm, which 260 

could possibly cause the trend to change from increasing to decreasing in the irrigated area 261 

of NMPineRiverArealr. A similar reason also caused a tipping point (from increasing to 262 

decreasing irrigation area) in EchoDitch around 2080 under HadGEM2. Under IPSL5B, 263 

some districts (Jicarilla, TwinRock, FarmingtonGlade, and EchoDitch) in Group 1 (Figure 264 

4a) and Group 2 (Animas River, Figure 4b) had a tipping point around 2045 can be 265 

explained by the winter precipitation trend. The tipping points indicated that available 266 

water for agriculture uses reached its potential, and the drier climate condition could 267 

subdue the agriculture production. Before 2045, there was a slightly increasing trend of 268 

winter precipitation until 2050. The winter precipitation of Group 1 and Group 2 under 269 

these GCMs are given in the supplemental materials (Figure S4). Different agents’ risk 270 

perception and their relative upstream-downstream location might also affect their decision. 271 

For example, risk perception parameters showed that Jicarilla is a risk-averse agent (with 272 

lower λ values), while NMPineRiverAreaIr is a risk-seeking agent (with higher λ values). 273 

Under the IPSL5AR scenario, the winter precipitation showed a decreasing trend, so 274 

Jicarilla gradually adjusts its irrigation area to adapt the future climate. 275 

NMPineRiverAreaIr was optimistic about the future water availability until it realized that 276 

winter precipitation decreased, and then it was forced to make a significant change in the 277 

irrigation area. However, under wetter GCM like CANESM, the increasing irrigated area 278 

in Jicarilla might partially result in NMPineRiverAreaIr decreasing the irrigated area. 279 

Among the 16 irrigation ditches, six of them, CitzenDitch (Figure 4c), Hammond 280 

(Figure 4c), FarmersMutal (Figure 4b), FruitlandAndCambridge (Figure 4c), JewettValley 281 

(Figure 4c), and Hogback (Figure 4c), participated in the shortage sharing agreement. And 282 
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in our ABM setting, we hypothesized that these districts responded to the agreement and 283 

curtailed their irrigated area by half of the previous year. After multiple years of irrigated 284 

area curtailment, this setting allowed us to mimic a real-world migration effect, if local 285 

framers decided to move out of the basin. The modeling results showed that toward 2100, 286 

under the driest future climate condition (IPSL5AR), irrigated areas of these six irrigation 287 

ditches will become (close to) zero, which indicated that these farmers may move out of 288 

the SJR basin. A similar pattern of farmers was observed in previous ABM studies 289 

(Hailegiorgis et al. 2018). This hypothesis needs additional tests in future studies with 290 

experts from the population dynamic. We further address this topic in the discussion 291 

section. 292 

Figure 5 shows the annual water diversion for irrigation of these 16 agents under 293 

different climate change, plus full NIIP water diversion impacts from 2014 toward the end 294 

of this century. In general, the trend (either increasing or decreasing) was very similar to 295 

the irrigated area in Figure 4. However, the annual water diversion showed a larger inter-296 

year variation than the irrigated area. The main reason for this variation was because the 297 

annual irrigation requirement was calculated inside Riverware by evapotranspiration. Since 298 

precipitation and temperature changed every year, the irrigation requirement also changed 299 

accordingly for the irrigated areas. Also, this inter-year variation was largest for agents 300 

located in the Animas River. This was because the total water availability in the tributary 301 

(i.e., the Animas River) was limited compared to the mainstem SJR.  302 

4.2. Climate change impacts on five basin-level metrics  303 

The impact of future climate change, plus full NIIP water diversion, on five basin-level 304 

metrics are shown in Figure 6. Figure 6a shows the mean annual storage of the Navajo 305 
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Reservoir that represents basin water availability. In general, water storage in Navajo 306 

Reservoir under climate change will be at a similar level as historical climate conditions, 307 

except for the driest GCM: IPSL5AR. This result was comparable with Bennett et al. (2019) 308 

and confirmed that the Navajo Reservoir has the capacity to smooth the intensifying inter-309 

annual flow variability driven by climate change. Figure 6b shows that, in terms of water 310 

export from SJR to the Rio Grande Basin, MIROC will result in a similar level of water 311 

export. But other GCMs showed a decreasing pattern in San Juan-Chama project diversion, 312 

while HadGEM2 and IPSL5AR result in the largest shortages among the five GCMs. 313 

Bennett et al. (2019) also showed that these two GCMs will cause the largest out-of-the-314 

basin water delivery shortage. Figure 6c shows the sum of the local water shortage among 315 

irrigation districts. The driest GCM, IPSL5AR, showed a severe local water shortage as 316 

expected. Figure 6d shows the average streamflow to Lake Powell that tries to fulfill the 317 

Upper Colorado Water Compact. Again, it is not surprising that the two drier GCMs, 318 

IPSL5AR and HadGEM2, showed the lowest flow, and MIROC, a relatively wetter GCM, 319 

showed an increase of streamflow to Lake Powell. Bennett et al. (2019) also showed 320 

MIROC and CANESM had higher than historical water delivery to Lake Powell. Finally, 321 

Figure 6e shows the numbers of days between March and July that has daily streamflow at 322 

Four Corners larger than 5000 cfs. The black dash line represents the minimal 21 day target. 323 

The wetter GCM, MIROC, shows more years that this target will be met (66 out of 85 324 

simulation years) and the drier GCM, IPSL5AR, shows the least years (24 out of 85 325 

simulation years). A similar conclusion was made by Bennett et al. (2019) that meeting 326 

minimum flow requirements was likely to be a major challenge in the SJR under climate 327 

change impacts. 328 
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We used the wetter GCM, MIROC, and the drier GCM, IPSL5AR, to test how bottom-329 

up management might help mitigate the negative impact at a basin-wide scale. Figure 7 330 

showed the results when we changed the irrigated area setting from dynamic adaptive 331 

behavior driven by ABM into the 1) constant 2013 area for all districts (the Year 2013 is 332 

the latest year we have the historical value) or 2) the historical minimal irrigated area value 333 

for all districts. The results indicated that at the basin level, these three different settings of 334 

future farmer behavior did not result in any differences under MIRCO. Under the IPSL5AR, 335 

some small improvements were observed in Navajo storage, local water shortage, 336 

streamflow to Lake Powell, and instream flow requirement under the minimum irrigated 337 

area setting.  338 

When we compare Figures 4, 5 and 7, we can highlight the differences of climate 339 

change impact on individual irrigation districts and basin-wide metrics. While climate 340 

change impact might significantly affect some irrigation districts’ irrigated areas (Figure 4) 341 

and water diversions (Figure 5), these behavioral changes are not observed in any of the 342 

basin-wide water scarcity metrics (Figure 7). This comparison shows water allocation in 343 

this basin is close to a “zero-sum” game while someone use more water, others must use 344 

less water to satisfy the basin-wide constraints. Therefore, basin-wide water scarcity 345 

metrics might not be able to reflect the changing local water diversion and irrigated area 346 

conditions. When policymakers try to implement any DCP in this basin, they should 347 

consider this situation and incorporate heterogeneous bottom-up decision-making process 348 

from farmers’ behavioral change in the DCP.  349 
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4.3. Sensitivity of the unutilized NIIP water rights  350 

Section 4.1 and 4.2 demonstrated the impact of full utilization of Indian water rights on 351 

both farmer- and basin-level water scarcity. In this section, we went a step further and 352 

showed the impact of Indian water rights on individual irrigation districts in the SJR basin. 353 

We changed the annual NIIP depletion target inside Riverware from full water use to 354 

current water use. The annual depletion for all tested runs is given in the supplemental 355 

materials (Figure S5). In the ABM setting, the NIIP depletion will directly affect agents in 356 

Group 3 (downstream of Navajo Reservoir), because NIIP directly takes water from the 357 

Navajo Reservoir. The NIIP depletion also indirectly affects other agents because Navajo 358 

storage affects all agents, especially agents who participated in the shortage sharing 359 

agreement. Figure 8 shows six agents (including all three groups) as a demonstration of 360 

current and full utilization of Indian water rights under the wetter GCM (CANESM) and 361 

drier GCM (IPSL5AR) conditions. 362 

The modeling results showed that under wetter future climate conditions, most agents 363 

would slightly reduce their irrigated areas and associated water diversions to allow larger 364 

water storage in the Navajo Reservoir and fulfill the full use of NIIP diversion (solid gray 365 

lines are lower than dotted gray lines). This difference was more noticeable in Group 3 366 

agents, because they were located downstream of the Navajo Reservoir. A similar pattern 367 

was observed under the dry future climate condition, solid blue lines lower than dotted blue 368 

lines meant that all agents were reducing their own irrigated areas and water diversions. 369 

However, one significant difference was the triggering of the shortage sharing agreement. 370 

The current NIIP water diversion under the drier future climate condition would not trigger 371 

the shortage sharing agreement. Therefore, even with some water scarcity issues, most 372 
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farmers will remain in the region if NIIP will maintain the current water use. This result 373 

implied that the expansion of the most senior water rights in the basin might potentially 374 

drive junior water right users out. 375 

5. Discussion 376 

5.1. Informing DCP Implementation with modeling results 377 

The coupled ABM-Riverware model was applied in this paper to evaluate the impact 378 

of climate change, plus full NIIP water diversion, on both farmer decisions concerning 379 

irrigated areas and the resulting impacts of agent decisions on five basin-level water 380 

scarcity metrics. In the first discussion section, we tried to explain how our modeling 381 

results provide information for basin-wide DCP implementation. In our simulation, SJR 382 

delivered an average of 1.14 MAF per year to Lake Powell under historical climate 383 

conditions. MIROC, CANESM, and IPSL5B showed increasing streamflow (1.450, 1.246, 384 

and 1.224 MAF, respectively), and HadGEM2 and IPSL5A showed decreasing streamflow 385 

(0.927 and 0.807 MAF). If we use historical climate conditions as a basis, under MIROC, 386 

CANESM, and IPSL5B, SJR basin had the potential to contribute an additional 0.309, 387 

0.105, and 0.083 MAF per year to Lake Powell, respectively. Alternatively, the average 388 

Navajo Reservoir storage is about 1.283 MAF under historical climate conditions. Again, 389 

if we used this value as a basis, our results showed that under MIROC, CANESM, and 390 

IPSL5B, the Navajo Reservoir can release additional 0.129, 0.013, and 0.085 MAF 391 

downstream. If we combine these two water sources, there will be an additional 0.438, 392 

0.118, and 0.168 MAF of water delivered to Lake Powell and the Lower Basin under 393 

MIROC, CANESM, and IPSL5B, respectively. Although these amounts are not a 394 
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significant amount of water, it can help with water curtailment in the Lower Basin and 395 

Mexico. For example, the additional 0.438 MAF under MIRCO can cover 100% of the 396 

water curtailment in the Lower Basin and Mexico if Lake Mead’s water level drops to 1075 397 

to 1090 ft (Stern and Sheikh, 2019). Even if the water level dropped to 1050 to 1075 ft, this 398 

amount of water could cover 70% of the curtailment (Stern and Sheikh, 2019). These 399 

results indicated that if the Upper Basin DCP can be implemented properly, the water 400 

scarcity condition in the entire CRB can be mitigated.  401 

5.2. Effect of parameter uncertainty on modeling results  402 

In the results section, we demonstrated the effect of different GCMs by using five GCM 403 

outcomes and the effects of under-utilized Indian water rights via different model settings. 404 

To further improve this coupled modeling framework, we tested the uncertainty associated 405 

with the model itself. In general, three types of uncertainty are commonly discussed in the 406 

scientific community (Yang and Wi, 2018): model input uncertainty (i.e., data uncertainty), 407 

model structure uncertainty (i.e., equation uncertainty), and model parameter uncertainty. 408 

Previous studies have discussed the data uncertainty (Vano et al., 2014) and model 409 

structure uncertainty (Miller et al-2012) in the CRB, and we want to further explore the 410 

effect of model parameter uncertainty and test the equifinality issue (Beven, 2006) on our 411 

results. 412 

In the model calibration process, we applied the Monte Carlo approach to test 200 413 

parameter sets. The best 20 sets with the highest NSE value compared to historical irrigated 414 

areas were selected. The calibration results of these sets are shown in Figure S6 of the 415 

supplemental materials. We then ran the ABM-Riverware model under the driest GCM, 416 

IPSL5AR, using these best 20 sets and showed the results in Figure 9. In Figure 9, the 417 
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results of the best set are highlighted by blue lines, which are the parameters we used in 418 

Section 4. The results of the other 19 sets are shown as gray lines. Figure 9a shows the 419 

farmer’s irrigated area, and Figures 9b, 9c and 9d show three basin-level water scarcity 420 

metrics: the Navajo storage, streamflow to Lake Powell, and the number of days between 421 

March and July above 5000 cfs at Four Corners, respectively. The effect of model 422 

parameter uncertainty was more significant at the farmer level than the basin level. Among 423 

agents, those located downstream of the Navajo Reservoir (Group 3) showed the largest 424 

variation in the irrigated area compared to Groups 1 and 2. This was because the Navajo 425 

Reservoir provides a more stable water supply to the downstream irrigation districts. 426 

Therefore, different sets of risk perception parameters (λ) and socioeconomic condition 427 

parameters (z) might be able to achieve a similar value of NSE (i.e., equifinality issue). 428 

The actual annual diversion of each agent is in the supplemental materials (Figure S7). 429 

Figures 9b, 9c, and 9d barely showed any differences to indicate that basin-level metrics 430 

will not be able to demonstrate the equifinality issue. This could be a concern of those 431 

modeling studies that only focus on basin-level results and want to explore the effect of 432 

DCP at the local level. A comprehensive evaluation of model uncertainty might be needed 433 

in the future to further explore this aspect.  434 

5.3. Model limitation  435 

There are other limitations and assumptions in our model worth further discussion. First, 436 

the hypothesis of the action of future farmers on the shortage sharing agreement will need 437 

further examination. The current ABM assumes 50% curtailment of irrigated areas change, 438 

which is an arbitrary number, and the migration results cannot be confirmed with any 439 

historical data. The curtailment of irrigated areas can be updated by standalone Riverware 440 
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simulation to reflect actual shortages of water. Furthermore, a survey study or local farmer 441 

engagement workshops will be needed to quantify the likelihood of local intentions for 442 

migration under drought conditions. Second, as we mentioned in Section 2, no detailed 443 

information is available about how the Navajo Reservoir will change its operation under 444 

Upper Colorado DCP. When such information becomes available, the same model can 445 

incorporate the new operation rule and test the effect on both basin-level water scarcity 446 

metrics and farmer-level decisions. We can also use such information to verify our 447 

discussion in Section 5.1 about whether SJR can help with the water curtailment in the 448 

Lower Basin. Finally, even though we have metrics to look at climate change impact 449 

beyond the SJR basin (streamflow Lake Powell and water export to the Rio Grande), a 450 

regional scale model, such as the Colorado River Simulation System, can better show how 451 

these changes might affect the entire CRB.  452 

6. Conclusion  453 

The continuous drought through the early 2000s has caused a serious water scarcity 454 

issue in the CRB. While different modeling approaches have been used to quantify the 455 

impact of climate change, only a few consider the adaptive behaviors of farmers and the 456 

combined effect of climate change and under-utilized Indian water rights. This paper used 457 

a coupled ABM-Riverware model to quantify the bottom-up adaptive water management 458 

under climate change as well as the influence of under-utilized Indian water rights to 459 

identify the potential tipping point of farmer behavioral changes, that is, the timing of 460 

farmer decisions to switch from increasing to decreasing irrigation area.  461 

The case study results of the SJR basin show that: 462 
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1) Farmers have different responses to expand or reduce irrigated areas to climate 463 

change impact. While changes in winter precipitation might partially explain the behavioral 464 

tipping point, no specific pattern can be concluded based on their location.  465 

2) Farmer responses to annual water diversion showed larger inter-year variation 466 

compared to irrigated area, and farmers located along the Animas River showed the highest 467 

variation because the water supply in the tributary is relatively limited.  468 

3) Climate change will, in general, worsen water scarcity issues in different basin-level 469 

metrics, such as Navajo Reservoir storage, flow to Lake Powell, and instream flow 470 

requirements, which echo several previous studies. 471 

4) Basin-level water scarcity metrics cannot reflect farm-level impacts under climate 472 

change, which emphasizes the importance of modeling bottom-up management actions. 473 

 5) Full utilization of Indian water rights will likely trigger the shortage sharing 474 

agreement under the drier future climate compare to current tribal water use. 475 

Future studies can focus on several different directions to improve the results of this 476 

work. A comprehensive evaluation of modeling uncertainty, including input data, model 477 

structure (i.e., equations), and model parameters, can benefit the scientific community and 478 

advance our understanding of the coupled human-natural system model. The irrigated area 479 

curtailment under drought condition, the effect of reservoir reoperation under drought 480 

contingency plan, and the regional impact beyond the SJR basin all need further evaluation. 481 

Also, interviews with farmers or surveys about farmer decision behaviors can improve our 482 

understanding of the decision process the ABM modeling, which is another future research 483 

direction.  484 
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Figure 1. San Juan River Basin, NIIP, 16 irrigation districts, environmental flow checking point, 

and Navajo Reservoir. 
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Figure 2. Schematic of modeling platform modified from Hyun et al. (2019). VIC and StateMod 

models provide necessary inputs (climatic and hydrologic) to RiverWare Model, which is two-

way coupled with agent-based decision-making model. 
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Figure 3. Model testing scenarios. ABM-Riverware model was used to quantify farmer decisions 

on irrigation area, annual water diversion, and five basin level evaluation metrics under 1) 

historical climate, 2) future climate, and 3) changing NIIP water diversion.   
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Figure 4. Historical (black dash lines) and future (colored lines) irrigated areas under different 

climate change and full NIIP water diversion impacts on 16 irrigation districts (agents). Agents 

are grouped: (a) G1 (upstream of Navajo), (b) G2 (Animas River), and (c) G3 (downstream of 

Navajo), based on their locations. Star next to the agent names means agent is participating in 

shortage sharing agreement.  
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Figure 5. Future annual water diversion under different climate change and full NIIP water 

diversion impacts on 16 irrigation districts (agents). Agents are grouped: (a) G1 (upstream of 

Navajo), (b) G2 (Animas River), and (c) G3 (downstream of Navajo), based on their locations. 

Star next to the agent names means this agent is participating in shortage sharing agreement. 
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Figure 6. Five basin level metrics for water scarcity under different climate change impacts and 

full NIIP water diversion. (a) Mean annual storage of Navajo Reservoir; (b) mean annual diversion 

of San Juan-Chama project; (c) total water shortage in the SJR Basin; (d) mean annual streamflow 

to Lake Powell; and (e) number of days about 5000 cfs between March and July at Four Corners. 
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Figure 7. Five basin level metrics for water scarcity under IPSL5AR (drier) and MIRCO (wetter) 

future climate condition plus full NIIP water diversion with different farmer behavior settings: (a) 

mean annual storage of Navajo Reservoir; (b) mean annual diversion of San Juan-Chama project; 

(c) total water shortage in the SJR Basin; (d) mean annual streamflow to Lake Powell; and (e) 

number of days about 5000 cfs between March and July at Four Corners. 
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Figure 8. Effect of increasing NIIP water diversion on irrigation areas under IPSL5AR (drier) and 

CANESM (wetter) climate scenarios. Star next to the agent names means this agent is participating 

in shortage sharing agreement. 
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Figure 9. Effect of model parameter uncertainty on (a) irrigation areas of 16 districts; (b) Navajo 

storage; (c) streamflow to Lake Powell; and (d) numbers of days between March and July above 

5000 cfs at Four Corners under IPSL5AR climate scenarios and full NIIP water diversion.   
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Table 1. Calculated five metrics for evaluating the water supply impacts under historical and future 

climate scenarios  
Metrics Location Description 

Mean annual 

storage 

Navajo 

Reservoir 

Purpose: Representing the general water availability;  

Calculation: Average the annual storage of Navajo Reservoir 

Mean annual 

diversion  

San Juan-

Chama project 

Purpose: Representing the impact on water exporting to the Rio 

Grande Basin;  

Calculation: Average the annual water diversion by the San Juan-

Chama Project  

Total annual 

shortage  

SJR basin Purpose: Representing the local water shortage;  

Calculation: Sum of the water shortage from all irrigation districts   

Mean annual flow  SJR basin 

outlet at Bluff, 

UT (ISF_Bluff) 

Purpose: Representing the water contribution from the SJR to the 

entire Upper CRB (Lake Powell);  

Calculation: Average the annual streamflow at ISF_Bluff 

Instream flow 

requirement 

Four Corners   Purpose: Maintaining critical habitats along the mainstem of SJR; 

Calculation: Numbers of days between March and July with daily 

streamflow higher than 5000 cfs at SanJuanAtFourCorners 

 


